Questions? Call us at (888) 344-8463

1x

Health Maintenance: We can do more

The amoeba is a single-cell organism that you might recall from high school biology. Single-cell organisms reproduce asexually. That is, from time to time, if food is plentiful, an amoeba splits in two.

Importantly, when an amoeba divides, it does not create an ‘old’ and a ‘young’ amoeba; it simply creates two amoebas from the same cell. In fact, if you waited for any amoeba to ‘grow old and die’, picking one of the two amoebas at random at each division, you would wait indefinitely.

An amoeba is like a car that comes with a very proactive mechanic inside. Amoebas can be damaged by the environment, and they experience wear and tear. However, amoebas can repair themselves faster than they break down. Unless severely damaged by their environment or starved, amoebas are immortal. That is, they can indefinitely repair the normal wear and tear of living faster than it occurs. Amoebas are evidence that biology and death are not inseparable. Amoebas do not die because of age. Like an automobile paired with a good mechanic, amoebas demonstrate that living cells can be maintained indefinitely.

Can we be maintained indefinitely like amoebas?

Unlike cars, we are alive. Unlike amoebas, we are multicellular. However, like cars and amoebas, we can be maintained to improve our health and lifespan.

Our individual cells actively maintain themselves. Like amoebas, our cells routinely repair damage done to their DNA, clear out accumulating waste, and replace worn-out organelles. However, unlike amoebas, our cells are not as effective in reversing damage, and eventually they degrade over time. It is likely that we will one day improve upon our own cellular repair mechanisms, but the fact that we are composed of trillions of cells complicates this maintenance approach. Not only is it difficult to operate on trillions of cells with disparate functions, but as multicellular organisms, we use selective cell death for normal tissue replacement, and as a strategy for staying healthy (an approach that amoebas cannot take for obvious reasons).

As within our individual cells, our bodies also actively maintain themselves on the tissue level. Damaged cells are replaced, and injuries are healed by new cells resulting from cell division. When it comes to tissue repair, stem cells are the master mechanics of our bodily systems. Directly, or through the cells they create, stem cells not only help heal us after injury, but they continually replenish the blood and immune system, and rebuild our bone, muscle, connective tissue, and vasculature. In fact, stem cells contribute to maintenance of most organs and systems of the body.

However, as with most of our cells, our stem cells experience environmental and internal damage that causes them to become less effective at tissue maintenance, and eventually they either shut down or die off. Because our stem cell populations diminish as we grow older, the tissues that they maintain eventually fall into disrepair as well.

Left to its own devices, our biology eventually falls short when it comes to maintenance and repair. However, where knowledge and technology have presented us the opportunity, we have taken matters into our own hands. For example, we clean out or bypass clogged arteries, we remove inflamed appendixes, we replace worn out knees and hips, we reshape eye lenses with lasers, and we swap out dysfunctional organs for new ones. As our understanding of our own biology increases, and as our ability to operate upon it improves, we will continue to practice better maintenance of the human body.

We founded Forever Labs to introduce a new method to our repertoire of health maintenance strategies. There now exists compelling evidence that replenishing our aged stem cell population with our own younger stem cells may significantly improve our health, and perhaps, even increase our lifespan. In my next blog post, I will discuss our new method of health maintenance, and how we are going to implement it.

MORE RESEARCH

HOW YOUNG BLOOD MIGHT HELP REVERSE AGING. YES, REALLY

Tony Wyss-Coray studies the impact of aging on the human body and brain. In this eye-opening talk, he shares new research from his Stanford lab...

READ


WHAT IS A STEM CELL ANYWAY?

As a biologist, and one who works with bone marrow stem cells in daily life, it’s easy to forget that to the general public, a ‘stem cell’ is not much more than an abstraction, a news-worthy meme that comes light on the details.

READ  

Health Maintenance: We can do more

The amoeba is a single-cell organism that you might recall from high school biology. Single-cell organisms reproduce asexually. That is, from time to time, if food is plentiful, an amoeba splits in two.

Importantly, when an amoeba divides, it does not create an ‘old’ and a ‘young’ amoeba; it simply creates two amoebas from the same cell. In fact, if you waited for any amoeba to ‘grow old and die’, picking one of the two amoebas at random at each division, you would wait indefinitely.

An amoeba is like a car that comes with a very proactive mechanic inside. Amoebas can be damaged by the environment, and they experience wear and tear. However, amoebas can repair themselves faster than they break down. Unless severely damaged by their environment or starved, amoebas are immortal. That is, they can indefinitely repair the normal wear and tear of living faster than it occurs. Amoebas are evidence that biology and death are not inseparable. Amoebas do not die because of age. Like an automobile paired with a good mechanic, amoebas demonstrate that living cells can be maintained indefinitely.

Can we be maintained indefinitely like amoebas?

Unlike cars, we are alive. Unlike amoebas, we are multicellular. However, like cars and amoebas, we can be maintained to improve our health and lifespan.

Our individual cells actively maintain themselves. Like amoebas, our cells routinely repair damage done to their DNA, clear out accumulating waste, and replace worn-out organelles. However, unlike amoebas, our cells are not as effective in reversing damage, and eventually they degrade over time. It is likely that we will one day improve upon our own cellular repair mechanisms, but the fact that we are composed of trillions of cells complicates this maintenance approach. Not only is it difficult to operate on trillions of cells with disparate functions, but as multicellular organisms, we use selective cell death for normal tissue replacement, and as a strategy for staying healthy (an approach that amoebas cannot take for obvious reasons).

As within our individual cells, our bodies also actively maintain themselves on the tissue level. Damaged cells are replaced, and injuries are healed by new cells resulting from cell division. When it comes to tissue repair, stem cells are the master mechanics of our bodily systems. Directly, or through the cells they create, stem cells not only help heal us after injury, but they continually replenish the blood and immune system, and rebuild our bone, muscle, connective tissue, and vasculature. In fact, stem cells contribute to maintenance of most organs and systems of the body.

However, as with most of our cells, our stem cells experience environmental and internal damage that causes them to become less effective at tissue maintenance, and eventually they either shut down or die off. Because our stem cell populations diminish as we grow older, the tissues that they maintain eventually fall into disrepair as well.

Left to its own devices, our biology eventually falls short when it comes to maintenance and repair. However, where knowledge and technology have presented us the opportunity, we have taken matters into our own hands. For example, we clean out or bypass clogged arteries, we remove inflamed appendixes, we replace worn out knees and hips, we reshape eye lenses with lasers, and we swap out dysfunctional organs for new ones. As our understanding of our own biology increases, and as our ability to operate upon it improves, we will continue to practice better maintenance of the human body.

We founded Forever Labs to introduce a new method to our repertoire of health maintenance strategies. There now exists compelling evidence that replenishing our aged stem cell population with our own younger stem cells may significantly improve our health, and perhaps, even increase our lifespan. In my next blog post, I will discuss our new method of health maintenance, and how we are going to implement it.

MORE RESEARCH

HOW YOUNG BLOOD MIGHT HELP REVERSE AGING. YES, REALLY

Tony Wyss-Coray studies the impact of aging on the human body and brain. In this eye-opening talk, he shares new research from his Stanford lab...

READ


WHAT IS A STEM CELL ANYWAY?

As a biologist, and one who works with bone marrow stem cells in daily life, it’s easy to forget that to the general public, a ‘stem cell’ is not much more than an abstraction, a news-worthy meme that comes light on the details.

READ